The spectrum of the billiard Laplacian of a family of random billiards
نویسندگان
چکیده
Random billiards are billiard dynamical systems for which the reflection law giving the postcollision direction of a billiard particle as a function of the pre-collision direction is specified by a Markov (scattering) operator P . Billiards with microstructure are random billiards whose Markov operator is derived from a “microscopic surface structure” on the boundary of the billiard table. The microstructure in turn is defined in terms of what we call a billiard cell Q, the shape of which completely determines the operator P . This operator, defined on an appropriate Hilbert space, is bounded self-adjoint and, for the examples considered here, a Hilbert-Schmidt operator. A central problem in the statistical theory of such random billiards is to relate the geometric characteristics of Q and the spectrum of P . We show, for a particular family of billiard cell shapes parametrized by a scale invariant curvature K (figure 3), that the billiard Laplacian P − I is closely related to the ordinary spherical Laplacian, and indicate, by partly analytical and partly numerical means, how this provides asymptotic information about the spectrum of P for small values of K. It is shown, in particular, that the second moment of scattering about the incidence angle closely approximates the spectral gap of P .
منابع مشابه
Localised eigenfunctions in Šeba billiards
We describe some new families of quasimodes for the Laplacian perturbed by the addition of a potential formally described by a Dirac delta function. As an application we find, under some additional hypotheses on the spectrum, subsequences of eigenfunctions of Šeba billiards that localise around a pair of unperturbed eigenfunctions.
متن کاملRandom Walks Derived from Billiards
We introduce a class of random dynamical systems derived from billiard maps, which we call random billiards, and study certain random walks on the real line obtained from them. The interplay between the billiard geometry and the stochastic properties of the random billiard is investigated. Our main results are concerned with the description of the spectrum of the random billiard’s Markov operat...
متن کاملSpectral gap for a class of random billiards
A random billiard is a random dynamical system similar to an ordinary billiard system except that the standard specular reflection law is replaced with a more general stochastic operator specifying the post-collision distribution of velocities for any given pre-collision velocity. We consider such collision operators for certain random billiards that we call billiards with microstructure. Colli...
متن کاملOptimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling
This paper investigates the multiplicative spread spectrum watermarking method for the image. The information bit is spreaded into middle-frequency Discrete Cosine Transform (DCT) coefficients of each block of an image using a generated pseudo-random sequence. Unlike the conventional signal modeling, we suppose that both signal and noise are distributed with Laplacian distribution, because the ...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کامل